朝倉市ニュース

朝倉市の話題や最新情報

integral ∫cos^3xsinxdxをsinx=

2021年3月6日 |

integral ∫cos^3xsinxdxをsinx=。積分定数の違いなので間違いではないのだよ。∫(cos^3x)(sinx)dxをsinx=tと置いて置換積分すると1/2(sinx)^2 1/4(sinx)^4+Cになってしまいました なぜcosx=tと置いた場合と答えが違うのでしょうか 以下計算過程です sinx=tとおくと、 dx=dt/cosx 与式=∫{(cosx)^2}t dx =∫{1 (t)^2}t dx =∫{t (t)^3}dx =1/2t 1/4t^4+Cintegral。- ,
,Evaluate。= =- ∴∫tanx/2=t。図を利用してください. 応用分野。 積分の計算手順, 知っていると便利な
積分の公式, 置換方法の例, /= とおく置換積分三角関数の相互関係の
公式= = より, =

三角関数の不定積分。積分変数が,,など積分定数と初期条件 , →置換積分
=?はその応用と得られるから必要なものではないが。順序
が入れ替わったときに思い違いしないように公式の仲間に入れておいてもよい。∫cos^3xsinxdxをsinx=tと置いて置換微分積分。∫^を= ∫^を=と置いて置換微分積分。微分
積分,積分の技法,積分学,の不定積分,サイン分の,コサイン分のの積分。How。∫=?+ ?=
= ∫=?∫=?+=?+

積分定数の違いなので間違いではないのだよ。-cos?x/4=-1-sin2x2/4=-1+2sin2-sin?x/4だから解答の-1/4+CをCに置き換えれば君のやった答えになるので正解。ただし質問文の計算式は誤りが見られます。sinx=tとなぜ置くのでしょう。不思議です。普通はcosx=tです。確かにcos3xsinx=cosx1-sin2xsinxなのでそう置いても出来ますが?百歩譲っても一目-1/4cos?x+cです。ここで∫fsinxcosxdxt=sinx∫fcosxsinxdxt=cosxは常識の置換です。是非これを覚えて下さい。序でに言えば三角関数の積分は2,3倍角を駆使するので見た目は違う事よくありますが定数差だけの違いは同じと見做し正解です。例∫x-1dx=1/2x-12+c或いは x2/2-x+c普通は前者で答えます。お分かりですね。頑張って下さい。以上です。

Comments

コメントを残す